

 Navigation

 	
 index

 	
 next |

 	Mimic 0.0.0 documentation

Welcome to Mimic’s documentation!

Mimic is an API-compatible mock service for Openstack Compute [http://docs.openstack.org/api/openstack-compute/2/content/] and
Rackspace’s implementation of Identity [http://docs.rackspace.com/auth/api/v2.0/auth-client-devguide/content/Overview-d1e65.html] and Cloud Load Balancers [http://docs.rackspace.com/loadbalancers/api/v1.0/clb-devguide/content/Overview-d1e82.html]. It is
backed by in-memory data structure rather than a potentially expensive
database.

Mimic helps with:

	fast set-up

	instant response

	cost efficient

	enables offline development

	enables ability to test unusual behaviors/errors of an api

	acts as a central repository for mocked responses from services

Documentation

	Development
	Getting started

	Submitting patches

	Docstrings

	Documentation Documentation

	Change Logs
	Next Version

 Copyright 2014, Individual Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mimic 0.0.0 documentation

Development

mimic welcomes contributions!

File bugs and feature requests on our issue tracker on GitHub [https://github.com/rackerlabs/mimic].

	Getting started
	Running tests

	Building documentation

	Building a Mac application

	Submitting patches
	Code

	Tests

	Documentation

	Docstrings

 Copyright 2014, Individual Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mimic 0.0.0 documentation

 	Development

Getting started

Working on mimic requires the installation of a small number of development
dependencies, which are listed in requirements/development.txt. They can
be installed in a virtualenv [https://pypi.python.org/pypi/virtualenv] using pip [https://pypi.python.org/pypi/pip]. This also installs mimic in
editable mode.

For example:

$ # Create a virtualenv and activate it
$ pip install --requirement requirements/development.txt

You are now ready to run the tests and build the documentation.

Some of the tox [https://pypi.python.org/pypi/tox] jobs may require certain packages to be installed, so
having homebrew [http://brew.sh/] installed would be useful if developing on Mac OS.

Running tests

mimic unit tests are found in the mimic/test/ directory. Then can be
run via the built-in tox commands after setting up tox.

$ tox -e py27

You can also run the tests for other python interpreters. We use
tox [https://pypi.python.org/pypi/tox], which creates a virtualenv [https://pypi.python.org/pypi/virtualenv] per tox job to run tests, linting, etc.:

$ tox
...
 py26: commands succeeded
 py27: commands succeeded
 pypy: commands succeeded
 docs: commands succeeded
 lint: commands succeeded

Building documentation

mimic documentation is stored in the docs/ directory. It is
written in reStructured Text [http://sphinx-doc.org/rest.html] and rendered using Sphinx [https://pypi.python.org/pypi/Sphinx].

To build the documentation, use tox:

$ tox -e docs

The HTML documentation index can now be found at
docs/_build/html/index.html.

Alternately, you can use sphinx directly, if you would like to specify
options:

$ sphinx-build -W -b html -d _tmp/doctrees docs docs/_build/html

Building a Mac application

The officially supported method of building of the application depends on the
system python, and the pyobjc [https://pypi.python.org/pypi/pyobjc], and py2app [https://pypi.python.org/pypi/py2app] libraries. Travis-CI [https://travis-ci.org/rackerlabs/mimic] is
configured to build the mac application and run its tests.

To build the application and run its tests locally use the following commands.

$ cd /dir/where/mimic/lives/
$./build-app.sh

Once built, mimic.app can be found in the ./dist directory.
This application can be treated like any other mac application and moved into
~/Applications.
To start mimic, use the open command with the path to mimic.app
, e.g. open ./dist/mimic.app.

When the application is running, the letter M will be visible in the
menubar. To quit the application, simply click on the M and select
Quit. You can view the application logs by opening
Applications/Utilities/Console.app.

To run mimic.app‘s tests use

$ /path/to/mimic.app/Contents/MacOS/run-tests

The application can also built as a standalone application
that does not depend on the system python.
This is not the officially supported method of building the application and
is not tested by Travis-CI [https://travis-ci.org/rackerlabs/mimic].

To build a standalone application, py2app requires the installation of a
non-system framework python.
In my experience, it is easiest to install a brewed 2.7 python.
To install a brew python, you’ll need to have homebrew [http://brew.sh/] installed.

The following commands will build the standalone application and run its
tests.

$ brew install python
$ cd /dir/where/mimic/lives/

$ # build a virtualenv using the brewed python
$ virtualenv -p /usr/local/bin/python2.7 ./venv
$ source ./venv/bin/activate

$ # install mimic's dependencies including pyobjc and py2app
$ pip install -r requirements/production.txt
$ pip install -r requirements/mac-app.txt
$ python setup.py py2app
$./dist/mimic.app/Contents/MacOS/run-tests

 Copyright 2014, Individual Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mimic 0.0.0 documentation

 	Development

Submitting patches

	If you have access to the mimic [https://github.com/rackerlabs/mimic] repository, always make a new branch for
your work.

	If you don’t have access to the mimic [https://github.com/rackerlabs/mimic] repository, working on branches in
your
fork is also nice because that will you can work on more than one PR at a
time.

	Patches should be small to facilitate easier review.

Code

When in doubt, refer to PEP 8 [https://www.python.org/dev/peps/pep-0008] for Python code (with some exceptions).
You can check if your code meets our automated requirements by running
flake8 against it. Even better would be to run the tox job:

$ tox -e lint
...
 lint: commands succeeded
 congratulations :)

Write comments as complete sentences. [http://nedbatchelder.com/blog/201401/comments_should_be_sentences.html]

Every Python code file must contain:

from __future__ import absolute_import, division

Tests

All code changes must be accompanied by unit tests with 100% code coverage
(as measured by the tool coverage [https://pypi.python.org/pypi/coverage].)

To test code coverage you’ll need to install detox [https://pypi.python.org/pypi/detox] and coverage [https://pypi.python.org/pypi/coverage].
They can be installed by running:

pip install --user requirements/toolchain.txt

(Or you may prefer to install those requirements in a virtualenv.)

Then run:

$ coverage erase \
 && detox \
 && coverage combine \
 && coverage html

And open htmlcov/index.html in your web browser.

Documentation

All features should be documented with prose in the docs section.
To ensure it builds and passes style checks you can run doc8 [https://github.com/stackforge/doc8] against it or
run our tox job to lint docs. We also provide a spell-check job for docs:

$ tox -e docs
 docs: commands succeeded
 congratulations :)

$ tox -e docs-spellcheck
 docs-spellcheck: commands succeeded
 congratulations :)

$ tox -e docs-linkcheck
 docs-linkcheck: commands succeeded
 congratulations :)

The spell-check can catch jargon or abbreviations - if you are sure it is not
an error, please add that word to the spelling_wordlist.txt in
alphabetical order.

Docstrings

Docstrings generally follow pep257 [http://legacy.python.org/dev/peps/pep-0257/], with a few exceptions. They should
be written like this:

def some_function(some_arg):
 """
 Does some things.

 :param some_arg: Some argument.
 """

So, specifically:

	Always use three double quotes.

	Put the three double quotes on their own line.

	No blank line at the end.

	Use Sphinx parameter/attribute documentation syntax [http://sphinx-doc.org/domains.html#info-field-lists].

The same job that lints code also lints docstrings:

$ tox -e lint
...
 lint: commands succeeded
 congratulations :)

 Copyright 2014, Individual Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mimic 0.0.0 documentation

Documentation Documentation

Here are some things we’re going to document and how we’re going to document
them.

There should be a document describing how to write your own API mock plugin.

	reference the Twisted documentation for writing plugins [https://twistedmatrix.com/documents/current/core/howto/plugin.html] as a
prerequisite

	provide an example of the file that goes into mimic/plugins,
dummy_plugin.py is a good start but it fails to explain what a real
resource might look like that responds to API requests
	unlike dummy_plugin.py, the IAPIMock implementer class ought to live in
an application module, the plugin should only contain the instantiation.

	better naming might help explain why you have to make separate “API mock”
and “Region” objects.

	explain what a twisted web resource is, reference twisted docs for the
interface and klein docs for how to produce your own resource with nice route
decorators

	implement catalog_entries
	are you implementing a crazy endpoint that manipulates the tenant ID?
manipulate it here.
	remember tenant ID may be None, because the core needs to allocate URI
prefixes before there are any tenants. maybe this really ought to be a
different API; the difference in meaning is that
catalog_entries(None) must enumerate all regions that any user might
possibly ever be able to access, whereas catalog_entries(not_none)
can return different regions for different tenants if it wants to (for
example, simulating limited availability).
	this is super confusing, and technically unnecessary; it just made the
implementation slightly easier to do in the first place. really all
the URI prefixes could be allocated on demand as individual tenants
receive particular services/region pairs for the first time, obviating
the need for this weird implementation detail. possibly file an issue
for this and just fix it before writing the final docs so we don’t have
to explain.

	return entries. canonical region right now is “ORD” but hopefully we can
eventually change this API at some point to support a suggested list of
regions from some configuration, pass in that list and then honor it here.

	implement resource_for_region
	this gets called on every request

	guideline: use klein to build your hierarchy since that makes it easier
	note that you can always use whatever twisted.web resources make sense,
if you want to toss a static hierarchy in there you don’t need to use
klein, just make a static.File or a static.Data (perhaps note this at the
end?)

	to-do implementation-wise: we really ought to have a JSON serializer as a
decorator or something so everybody doesn’t have to actually type
“dumps” all the time

	note where the “region” is in the hierarchy; there will be some URI prefix
which you hopefully don’t care about (passed in as the
resource_for_region argument) but you have to handle all segments from
the end of the thing that Mimic has allocated for you: including your
“prefix”; so if your “prefix” to the Endpoint construction in
catalog_entries is “v5” then your routes need to all begin
“/v5/<string:tenant_id>/”. The object returned from _that_ route is
actually the specific tenant’s service endpoint.

	implementation note: t.w.resource lifecycle management is weird, and a bit
hard to explain. It would be nice to tell the developer at this point that
they can store some kind of state on the session or associated with the
tenant, but given that each resource is implicitly created with each
request, it’s a bit tricky to do that. perhaps we should expose the
“session” object we’re already keeping around in MimicCore to application
code, or a dictionary associated with it, so that we can easily have
per-tenant state.

 Copyright 2014, Individual Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Mimic 0.0.0 documentation

Change Logs

Next Version

	The Cinder V2 API now has limited support for the List volumes with details [http://developer.openstack.org/api-ref-blockstorage-v2.html#listVolumesDetail] endpoint.

 Copyright 2014, Individual Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Mimic 0.0.0 documentation

Index

 P

P

 	

 	
 Python Enhancement Proposals

 	

 	PEP 8

 Copyright 2014, Individual Contributors.
 Created using Sphinx 1.3.5.

 _static/plus.png

search.html

 Navigation

 		
 index

 		Mimic 0.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Individual Contributors.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

